Health

Identification of environmental factors that promote intestinal inflammation

Identification of environmental factors that promote intestinal inflammation

  • Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamm, M. A. Rapid changes in epidemiology of inflammatory bowel disease. Lancet 390, 2741–2742 (2018).


    Google Scholar
     

  • Covacu, R. et al. System-wide analysis of the T cell response. Cell Rep. 14, 2733–2744 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quintana, F. J. et al. Adaptive autoimmunity and Foxp3-based immunoregulation in zebrafish. PLoS ONE 5, e9478 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176, 581–596 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, R. M. et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471, 518–522 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212–1222 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Fleming, A., Jankowski, J. & Goldsmith, P. In vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study. Inflamm. Bowel Dis. 16, 1162–1172 (2010).

    PubMed 

    Google Scholar
     

  • Goettel, J. A. et al. AHR activation is protective against colitis driven by T cells in humanized mice. Cell Rep. 17, 1318–1329 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richard, A. M. et al. ToxCast chemical landscape: paving the road to 21st century toxicology. Chem. Res. Toxicol. 29, 1225–1251 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Gut, P. et al. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat. Chem. Biol. 9, 97–104 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter, S., Schulze, U., Tomancak, P. & Oates, A. C. Small molecule screen in embryonic zebrafish using modular variations to target segmentation. Nat. Commun. 8, 1901 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaakoush, N. O. Sutterella species, IgA-degrading bacteria in ulcerative colitis. Trends Microbiol. 28, 519–522 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiering, C. et al. Feedback control of AHR signalling regulates intestinal immunity. Nature 542, 242–245 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okey, A. B., Vella, L. M. & Harper, P. A. Detection and characterization of a low affinity form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. Mol. Pharmacol. 35, 823–830 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Akashi, T. I., Nagano, K., Enomoto, E., Mizuno, M. & Shibaok, K. Effects of propyzamide on tobacco cell microtubules in vivo and in vitro. Plant Cell Physiol. 29, 1053–1062 (1988).

    CAS 

    Google Scholar
     

  • Jackman, R. W., Rhoads, M. G., Cornwell, E. & Kandarian, S. C. Microtubule-mediated NF-κB activation in the TNF-α signaling pathway. Exp. Cell. Res. 315, 3242–3249 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14, 937–948 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meredith, M. M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cybulsky, M. I. et al. Gene structure, chromosomal location, and basis for alternative mRNA splicing of the human VCAM1 gene. Proc. Natl Acad. Sci. USA 88, 7859–7863 (1991).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, H. & Ghosh, S. NF-κB: roles and regulation in different CD4+ T-cell subsets. Immunol. Rev. 252, 41–51 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Iyer, S. S. et al. Dietary and microbial oxazoles induce intestinal inflammation by modulating aryl hydrocarbon receptor responses. Cell 173, 1123–1134 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cole, D. J. Metabolic Pathways of Agrochemicals. Part One—Herbicides and Plant Growth Regulators (eds Roberts, T. et al.) (Royal Society of Chemistry, 1998).

  • Propyzamide; Pesticide Tolerances; https://www.federalregister.gov/documents/2016/01/13/2016-00534/propyzamide-pesticide-tolerances (US Government, 2016).

  • Chaiklieng, S., Suggaravetsiri, P. & Autrup, H. Risk assessment on benzene exposure among gasoline station workers. Int. J. Environ. Res. Publ. Health 16, 2545 (2019).

    CAS 

    Google Scholar
     

  • Ott, M. G., Diller, W. F. & Jolly, A. T. Respiratory effects of toluene diisocyanate in the workplace: a discussion of exposure-response relationships. Crit. Rev. Toxicol. 33, 1–59 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuenca, L. et al. Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans. PLoS Genet. 16, e1008529 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Guidelines for Drinking-Water Quality Vol. 2, Ch. 14.11, 461–467 (1996).

  • Toxicological Profile for Toluene Diisocyanate and Methylenediphenyl Diisocyanate (US Department of Health and Human Services, 2018).

  • World Health Organization. Guidelines for Drinking-Water Quality Vol. 2, Ch. 14.21, 530–540 (1996).

  • Sorg, O. AhR signalling and dioxin toxicity. Toxicol. Lett. 230, 225–233 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Muku, G. E., Murray, I. A., Espín, J. C. & Perdew, G. H. Urolithin A is a dietary microbiota-derived human aryl hydrocarbon receptor antagonist. Metabolites 8, 86 (2018).

    PubMed Central 

    Google Scholar
     

  • Gerondakis, S., Fulford, T. S., Messina, N. L. & Grumont, R. J. NF-κB control of T cell development. Nat. Immunol. 15, 15–25 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Balasubramani, A. et al. Modular utilization of distal cis-regulatory elements controls Ifng gene expression in T cells activated by distinct stimuli. Immunity 33, 35–47 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, Q. et al. The Th17 immune response is controlled by the Rel-RORγ-RORγ T transcriptional axis. J. Exp. Med. 208, 2321–2333 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yosef, N. et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496, 461–468 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satoh, T. et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541, 96–101 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaronen, M., Wheeler, M. A. & Quintana, F. J. Protocol for inducing inflammation and acute myelin degeneration in larval zebrafish. STAR Protoc. 3, 101134 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nüsslein-Volhard, C. & Dahm, R. Zebrafish: A Practical Approach 1st edn (Oxford Univ. Press, 2002).

  • Cusick, M. F., Libbey, J. E., Trede, N. S., Eckels, D. D. & Fujinami, R. S. Human T cell expansion and experimental autoimmune encephalomyelitis inhibited by Lenaldekar, a small molecule discovered in a zebrafish screen. J. Neuroimmunol. 244, 35–44 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Ridges, S. et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119, 5621–5631 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ToxCast & Tox21 Summary Files from invitrodb_v3; https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data (US EPA, accessed 28 October 2018).

  • Ruder, B., Atreya, R. & Becker, C. Tumour necrosis factor alpha in intestinal homeostasis and gut related diseases. Int. J. Mol. Sci. 20, 1887 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Andreou, N. P., Legaki, E. & Gazouli, M. Inflammatory bowel disease pathobiology: the role of the interferon signature. Ann. Gastroenterol. 33, 125–133 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McEntee, C. P., Finlay, C. M. & Lavelle, E. C. Divergent roles for the IL-1 family in gastrointestinal homeostasis and inflammation. Front. Immunol. 10, 1266 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salas, A. et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 323–337 (2020).

    PubMed 

    Google Scholar
     

  • Decara, J. et al. Peroxisome proliferator-activated receptors: experimental targeting for the treatment of inflammatory bowel diseases. Front. Pharmacol. 11, 730 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pernomian, L., Duarte-Silva, M. & de Barros Cardoso, C. R. The aryl hydrocarbon receptor (AHR) as a potential target for the control of intestinal inflammation: insights from an immune and bacteria sensor receptor. Clin. Rev. Allergy Immunol. 59, 382–390 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Camblor, P., Pérez-Fernández, S. & Díaz-Coto, S. The role of the p-value in the multitesting problem. J. Appl. Stat. 47, 1529–1542 (2020).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 

    Google Scholar
     

  • Tong, H., Faloutsos, C. & Pan, J. Fast random walk with restart and its applications. In Proc. Sixth International Conference on Data Mining (ICDM’06) 613–622 (IEEE, 2006).

  • Kohler, S., Bauer, S., Horn, D. & Robinson, P. N. Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82, 949–958 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 17 (2005).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Zhou, G. et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 47, W234–W241 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neurath, M. F., Fuss, I., Kelsall, B. L., Stuber, E. & Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182, 1281–1290 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A. & Mikkelsen, T. S. Characterization of directed differentiation by high-throughput single-cell RNA-Seq. Preprint at bioRxiv https://doi.org/10.1101/003236 (2014).

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

    CAS 

    Google Scholar
     

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. S., Soneson, C. & Robinson, M. D. Importing transcript abundance datasets with tximport. Bioconductor https://bioconductor.org/packages/devel/bioc/vignettes/tximport/inst/doc/tximport.html (2017).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).

    PubMed 

    Google Scholar
     

  • Cox, L. M. et al. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci. Rep. 9, 17904 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, S. H. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).

    PubMed 

    Google Scholar
     

  • Chu, C. et al. The microbiota regulate neuronal function and fear extinction learning. Nature 574, 543–548 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeste, A. et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci. Signal. 9, ra61 (2016).

    PubMed 

    Google Scholar
     

  • Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burbach, K. M., Poland, A. & Bradfield, C. A. Cloning of the Ah receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc. Natl Acad. Sci. USA 89, 8185–8189 (1992).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolwick, K. M., Schmidt, J. V., Carver, L. A., Swanson, H. I. & Bradfield, C. A. Cloning and expression of a human Ah receptor cDNA. Mol. Pharmacol. 44, 911–917 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Lowe, M. M. et al. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS ONE 9, e87877 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J. et al. A ligand for the aryl hydrocarbon receptor isolated from lung. Proc. Natl Acad. Sci. USA 99, 14694–14699 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, A. J. et al. In silico identification of an aryl hydrocarbon receptor (AHR) antagonist with biological activity in vitro and in vivo. Mol. Pharmacol. 86, 593–608 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascanfroni, I. D. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat. Immunol. 14, 1054–1063 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • #Identification #environmental #factors #promote #intestinal #inflammation

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button